A Dynamic Selection Method for Reference Electrode in SSVEP-Based BCI
نویسندگان
چکیده
In SSVEP-based Brain-Computer Interface (BCI), it is very important to get an evoked EEG with a high signal to noise ratio (SNR). The SNR of SSVEP is fundamentally related to the characteristics of stimulus, such as its intensity and frequency, and it is also related to both the reference electrode and the active electrode. In the past, with SSVEP-based BCI, often the potential at 'Cz', the average potential at all electrodes or the average mastoid potential, were statically selected as the reference. In conjunction, a certain electrode in the occipital area was statically selected as the active electrode for all stimuli. This work proposed a dynamic selection method for the reference electrode, in which all electrodes can be looked upon as active electrodes, while an electrode which can result in the maximum sum relative-power of a specific frequency SSVEP can be confirmed dynamically and considered as the optimum reference electrode for that specific frequency stimulus. Comparing this dynamic selection method with previous methods, in which 'Cz', the average potential at all electrodes or the average mastoid potential were selected as the reference electrode, it is demonstrated that the SNR of SSVEP is improved significantly as is the accuracy of SSVEP detection.
منابع مشابه
Development of a Brain Computer Interface (BCI) Speller System Based on SSVEP Signals
BCI is one of the most intriguing technologies among other HCI systems, mostly because of its capability of recording brain activities. Spelling BCIs, which help paralyzed people to maintain communication, are one of the striking topics in the field of BCI. In this scientific a spelling BCI system with high transfer rate and accuracy that uses SSVEP signals is proposed.In addition, we suggested...
متن کاملAn Efficient Frequency Recognition Method Based on Likelihood Ratio Test for SSVEP-Based BCI
An efficient frequency recognition method is very important for SSVEP-based BCI systems to improve the information transfer rate (ITR). To address this aspect, for the first time, likelihood ratio test (LRT) was utilized to propose a novel multichannel frequency recognition method for SSVEP data. The essence of this new method is to calculate the association between multichannel EEG signals and...
متن کاملTowards an SSVEP Based BCI With High ITR
A brain-computer interface (BCI) provides the possibility to translate brain neural activity patterns into control commands without movement by the user. In recent years, there has been increasing interest in using steady-state visual evoked potential (SSVEP) in BCI systems; the SSVEP approach provides currently the fastest and most reliable communication paradigm for the implementation of a no...
متن کاملComparison Between Different Methods of Feature Extraction in BCI Systems Based on SSVEP
There are different feature extraction methods in brain-computer interfaces (BCI) based on Steady-State Visually Evoked Potentials (SSVEP) systems. This paper presents a comparison of five methods for stimulation frequency detection in SSVEP-based BCI systems. The techniques are based on Power Spectrum Density Analysis (PSDA), Fast Fourier Transform (FFT), Hilbert- Huang Transform (H...
متن کاملMulti-target SSVEP-based BCI using Multichannel SSVEP Detection
Spatial filtering method and fast Fourier transform (FFT) based spectrum estimation method are applied to reveal the presence of steady state visual evoked potential (SSVEP) in multiple-electrodes electroencephalogram (EEG) signals used in Brain-Computer Interface (BCI) system. The SSVEP responses are elicited by visual stimuli in the form of flickering light emitting diode (LED) array and comp...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره 9 شماره
صفحات -
تاریخ انتشار 2014